
AD- AI7S 32 ET PRO R ANING: A NEW METHODOLOGY
FOR THE CONSTRUCTION 1/1

OF QUALITY SOFTMA.. (U) UNIVERSITY OF SOUTHERN
CALIFORNIA LOS ANGELES DEPT OF COMPUTE. L FLON ET AL.

UNCLASSIFIED 30 JAN 96 53-4519-1741 RFOSR-TR-66-0419 F/0 9/2 N

:i
pt : W 2

un1i2'

UNCLASSIFIED
-- ,111t CLASSIOICATION' ECTMIS PAGE

REPORT DOCUMENTATION PAGE
aREPORT SECURITV' CLASSIFICATION1bRETIIV 11KN

O UNCLASSIFIED N/A
2&, SECURITY CLASS'F 'CATIO,% AUTHORITY 3. OISTRIBLITIONIA VAI LABILITY OF REPORTo N/A Unlimited distribution

[#%2b. O&CL*SSIF CATION/OOWINORAOING SCHEDULE

N/A _

~aPIRPOAMING ORGANIZATION REPORT NUIMIER(S) S. MONITORING ORGANIZATION REPORT NdUMSR(S)

AFO!;R-TR. 6 fi 4 1
C ("6& NAME OF PERFORMING ORGANIZATION b. OF FI CE SYMBO L Ug. NAME OF MONITORING ORG0ANIZATION

PUniversity of Southern ftap~lt
California Air Force Office of Scientific Research

5r. ADDRESS (City. Saga. mit ZIP Cede) 7b. ADDRESS (City. Sao& gisid ZIP Code)

PUniversity Park Computer Science Department
Los Angeles, California 90089-1147 Universit of Southern Calif nia

_________________________________ SALTZO, UsAngeles. Ca. 90889-0782
So. NAME OF OUDNJPNOIGlb. OFFICE SYMBOL 9. PROCUREMENT IINSTRUMENT IDENTIFICATION NUMBER

ORGAMIZATION OPAW64 Ppjbe

AFOSR J_______ AFOSR-81 -0199
&L. ADDRESS ICSO,. Sale wed ZIP Code) 10. SOURCE of: FUNDING mos. ____________

*Boiling AirfForce Base, Bldg. 410 PROGRAM PROJECT TASK WORK UONIT

Washington, D.C. 20332 A e ~ M NO. No. No. No

11,I TITLE alairuc Sieursty CJ~sdiioenj Metaprogrammling: A'' /' /2~
be& 2gyfor the Construction of Quali -__________ ____ __

L. Hlon/L.W. Cooprider/E. Horowitz
13a TYPE OF REPORT 13 TIMELOVERD 1A DATE OF REPORT (Yr. Mlo. Day) is. PAGE COUNT

Final .- lmf/58 ToL L I 13/611
* IS. SUPPLEMENTARY NOTATION I... IIt.u

~LECTE
17 COSATI CODES IS SUBJECT TERMS EConhnw on vwli;I b

F ILD GROUP sue. GPI.

19. Ad$TAACT ICORIuAnw nn WP3rr it seircmary med Idmntify by Nilob membeir)mo

*--rhere were three major contributions that came out. of this research. The first was the
C* development of a program development environment that permits software to be reused.
1:-
CD The second was the development of techniques for the design and specification of

C->concurrent programs. The third was a new method for writing prograrps that involves
L-'- pictures. For each of these contributions a student Ph.D. thesis was produced, in

L particular Dr. Anne Curran worked on the first problem, Dr. Thierry Paradan worked
on the second problem and Dr. Georg Raeder worked on the last problem. Since each of

their contributions are radically different, this summary report is broken into three
categories, each based upon their work

2.DISTRAtBUT IONIA VAILABI LIT Y OF ABSTR4ACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED MSAME AS RIP-T 03 TIC USERS 03
22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFF ICE SYMBOL

Etieiod A ova CodeI

Ellis Horowitz 4 (213)743-6453

D FORM 1473,83 APR EDITION 0"JAN 721S OBSOLETE. IIN~l a&TrFn
SECURITY CLASSIF ICATION OF ?MIS PAGE

I7-

AFOSR-TK- o 6 - 0 4 19 PROJECT SUMMARY

Title Metaprogramming: A New Methology for the Construction of
Quality Software

Principal
Investigators Lawrence Flon/Lee Cooprider/Ellis Horowitz

Inclusive Dates : 6/15/81 to 9/14/84

Costs : $330,922

Junior Research
Personnel : AnneCurran, Thierry Paradan, and Georg Raeder

ABSTRACT

There were three major contributions that came out of this research. The first was the

development of a program development environment that permits software to be reused.

The second was the development of techniques for the design and specification of

concurrent programs. The third was a new method for writing programs that involves

pictures. For each of these contributions a student Ph.D. thesis was produced, in

particul~r Dr. Anne Curran worked on the first problem, Dr. Thierry Paradan worked

on the second problem and Dr. Georg Raeder worked on the last problem. Since each of

their contributions are radically different, this summary report is broken into three

categories, each based upon their work.

Approvei for publ iO re@1005a

0 *57
I

I.

On the Design and Implementation of an Environment for Reusable
Software - Anne Marie Curran

As the cost of hardware decreases, software costs increasingly dominate a computer

system, particularly when large scale software systems are involved. Why is it that

experience gained over the past few decades has resulted in drastic decreases in hardware

cost and production time, and in increased reliability, but less dramatic advances have

been made in software construction! Obviously, solne of the gains in hardware are the

result of more sophisticated basic materials, but more sophisticated omaterialso have

also been created to aid software developers, for example, high level languages.

An examination of the various approaches used in building large hardware and

software systems reveals the answer to this question. Hardware construction generally

uses the technique of building systems from pre-existing, correct modules, rather than

from scratch. This technique, which is also used by other engineering disciplines, is

possiblP only because the components are designed to be reusable and not for a specific

application. Just as the nuts and bolts which hold the cabinet of a computer together

were not designed and manufactured solely for that purpose, most of the chips in the

machine were not designed for that one application. There are occasionally exceptions,

of course, where designing a special-purpose component from scratch is necessary. But

these situations are time-consuming and costly, and should be avoided whenever possible.

The benefits of building a system from existing components are well-known:

lowered costs. increased reliability, and simplified "., repairs.
*• " '. rcport has beet) - -- ,

Constructing a large system is simply a matter of coedetiqlthte*ti" tomnfOneath
bn Is uf .ifiAmite,

711 J. ..

'1

and debugging the nterfaces. The savings in time and effort result from being able to

assume that individual components function properly, rather than having to build and

debug them from scratch.

In contrast, most large software systems are built almost entirely from scratch.

Thus a large amount of time and effort is wasted re-implementing common data

structures and algorithms, and solving problems which have been solved countless time

before. Use of pre-existing modules is very limited, for example, low-level I/O or

mathematical routines. It seems obvious that constructing a software system would be

greatly simplified by building it from components. Certainly software suffers from the

same problems that would of occur if other disciplines used this approach: increased

*development time and cost due to the duplication of effort, decreased reliability caused

by debugging each component as well as the component interfaes, and costly

maintenance.

1.1 The Traditional Software Development Environment

The answer to why software engineering has not adapted the design techniques

which have proven so effective in other engineering fields lies in both the current

* programming tools, and in the attitudes of programmers. When given a problem, most

programmers are interested in solving only that problem, rather than implementing a

solution which will save themselves and others work in the future. A non-trivial amount

of code falls into the category of a equick and dirty solution, which requires extensive

modifications to be applied to a problem even slightly different than the original. The 0

programmer may fully intend to rewrite the code later and make it more general, but -----

"quick and dirtv code often remains in use for amazingly long periods of time. Such

software exists partly because once the high-level design is finished, 'the programmer

4 S

..................................
* . .- -

3

tend. to immediately start writitig code, in contrast to the hardware designer who will

probably pick up a catalog and determine which parts are already available. But the

programmer is not entirely to blame, since the traditional programming environments do

not support either developing or utilizing reusable software. Suppose that a programmer

realizes that someone must have already solved a problem, and wishes to avoid

duplicating that effort. The programmer is likely to encounter several problems:

- The programmer must find out that the software exists.

o The prograzpmer must determine how to use it to solve his/her particular
problem.

* The software may be similar to, though not quite what the programmer
needs.

o The software may be too inefficient.

- The software may not work.

Typically. a software module which is reused has not been designed that way, but

consists of some useful part of a system which has been extracted and made available to

other programmers. Unfortunately, this approach to generating reusable modules often

does not work well. One of the most serious problems is that a module which is designed

for a particular application frequently contains implicit assumptions about its

environment. If an unsuspecting programmer removes the module from the original

environment, these assumptions may be violated, causing the module to work poorly or

not at all. Thus an attempt to take advantage of another programmer's work often

becomes a frustrating waste of effort.

To be successfully reused. a module must be designed and constructed with that

intention. A reusable module is defined here to have the following properties:

o It must be general enough to do precisely what a user needs.

,*,- . .', S , - -: - ,: ;- -..-, :.. .,-.-:-:-.: .* ?. : ..* _..*. .'..,....- -.... ..-.* . ,:.- . ,;,;

4

" It must be, efficient.

* It must be easily maintained.

* It must be correct.

The qualities.of efficiency, correctness and solving the right problem are vital from

the user's point of view. If a module lacks any of these properties, the user may be

better off writing the code from scratch.

Throughout the discussion of metaprogramming, the term 'reusable software = and

*general purpose softwarew are used almost interchangeably. The reason for this is that

a special purpose program may have such limited functionality or make so many

environmental assumptions that in most cases, it cannot be reused without extensive

modifications. The general purpose program has several advantages over one written for

a specific purpose. By sharing common code, the general purpose program requires

fewer lines of code than the many specialized programs needed to solve a set of

problems. Maintenance costs are lower, since someone may neglect to change some of

the specialized code. so sharing code also has an advantage in this area.

In practice, however, writing software with all these properties is not an easy task.

One of the basic problems is that constructing a general solution to a problem is

inherently more difficult than solving one specific instance of that problem. This

situation is not unique to the software engineering field, where identifying and then

understanding the general problem are often major obstacles. Part of the answer lies in

finding programmers who are capable of solving abstract problems and convincing them

of doing so. For this to be practical, programmers must be convinced that the extra

effort is justified, and they must be provided with a set of tools which make writing and

q~~.' . .'.

maintaining high quality. general purpose software as easy as possible. Unfortunately,

the tools which arc currently available make the tast even more difficult. The

programmer may often find that the only way to create a module possessing some of the

above qualities is by deliberately omitting the others.

An important part of improving software tools is to identify the specific problems

that programmers encounter when trying to write or access general purpose software. It

seems obvious from the areas already mentioned that a language which is suitable for

writing general purpose software is vital, and that accessing these modules requires some

sort of a library mechanism. In fact, writing, maintaining, and. accessing reusable

software does require a complete environment which is appropriate for these tasks.

Various aspects of programming environments have been studied, but it general they do

not oversome all of the problems.

1.2 The Metaprogramming Environment

To solve the problems of writing reusable software, a new methodology, called

metaprogamming. is presented in this dissertation. A metaprogram is the simultaneous

denotation of a group of closely related programs, called a program family. The

metaprogram cannot be directly executed, but rather serves as a template of a solution

to a problem. To solve a particular problem, the metaprogram is provided with

information concerning the application, thereby instantiating it into an ordinary module.

There are several advantages to constructing software using this approach. By encoding

an entire family rather than just one program, the generality which is lacking in most

library modules is achieved. In addition, the simultaneous representation of the program

family permits common code to be shared, which reduces the cost of maintaining the

module. The fact that the metaprogram is not in itself executable avoids the

6

environmental assumptions that end to creep into ordinary modules.

An important metaprogramming concept is that developing software to solve

abstract problems is not only more difficult, but also involves different activities than

coding the answer to a given problem. If a programmer is given the same set of tools to

solve both classes of problems, the task becomes extremely difficult, if not impossible.

However, the actions required to implement both classes are not completely disjoint. In

other enginering fields, not only are systems designed from compone nts, but the more

complex components are themselves built from simpler components. A similar design

principle is also expected when constructing software, so that larger, more complex

software modules are built by interfacing smaller modules. Thus the metaprogrammer is

supplied with a superset of the tools given to the ordinary programmer in order to also

take advantage of previously written modules.

A high-level language that is suitable for expressing general purpose programs is an

integral part of the metaprogramming system. Unfortunately, conventional

programming languagues are not powerful enough to encode non-trivial program

families. Since they are not designed to solve abstract problems, conventional languages

are incapable of expressing the variations in a program family so that its instances are

both reliable and efficient. Usually the only alternative is to choose between makeing

the program reliable and making it efficient. If reliability takes precedence, the

programmer must resort to using mechanism which are expensive at runtime, such as

variant records. and encode all the vpriations to allow semantic checking. Overhead is

incurred from the program determining what problem to solve, as well as from storage

which is wasted by routines and data structures which are not needed by an application.

If efficiency has priority. then the only mechanisms for encoding variations are forms of

.1

source-level text manipulation such as conditional compilation or macros. These may be

efficient in that the unneeded parts of the program will disappear during compilation.

but only those variations which are actually used are known to be correct. In addition,

there are variations in program families which are impossible to express in a general

fashion, even if reusability and efficiency are ignored

For these reasons, a special high-level language for writing metaprograms was

developed by augmenting the DOD language Ada. The major strength of this language,

called meta-Ada, is that it allows simultaneous semantic checking of the entire program

family during compilation, yet only those parts of the program which are actually needed

for a specific member exist at runtime. The complete metaprogramming environment

also requires library and runtime support. Modules interface information is an important

part of the library, just as it is in more conventional environments. In addition, the

library must contain functional descriptions of the module in a format accessible either

bv users or by system programs, and verification information for the code in each

module. The module description also provides guidance in choosing a legal and efficient

instance of the unit according to how it is referenced by an application.

1.3 Goals

The purpose of this research is to find feasible solutions to some of the problems of

writing reliable, general purpose software. This is accomplished by the following:

9 Identification of the problems which exist in the traditional software
development environment in both developing and using general purpose
software, with emphasis on those problems which are caused by conventional
programming languages.

e Development of constructs which remedy the inadequacies in programming
languages.

* Integration of these constructs into a suitable high-level programming

• : ' ." '-, ¢ '" - .. ,* ... ,',. * *€'- . a'" , -'. ,,,. . ,'- ', ,-'e' ,'..,-,-. -.-. -... ' -- 9 '-'-' -.--

8

language.

Identification of the issues involved in implementing a metaprogramming
language.

" Demonstrating that the implementation is both possible and feasible by
building a prototype compiler and linker for this language.

The latter goal is particularly important, as we are Dot interested in a highly

theoretical discussion of abstract progrmming but research that can be applied to actual

software development. Our goal is not. only to demonstrate that the proposed language

can solve particular problems in sriting general purpose software, but that the

' implementation of metaprogramming constructs is both possible and feasible. The term

"feasible" is used here to mean that the time and storage requirements for supporting

metaprogramming are not prohibitive. Since the prototype system was not designed as a

production system. efficiencv was not the major concern. However, if the prototype

appears feasible, then its cost can form a crude upper bound for a production system.

In translating a metaprogramming language, a number of issues arise which are not

normally encountered when translating conventional languages. Since the metaprogram

represents an entire program family, semantic checking of all its variations must be

performed. This introduces problems such as keeping track of which parts belong to the

different instances., and developing algorithms for checking constructs which may not

always exist.

.Although an important part of a production software system, the design and

implementation of the metaprogramming library and runtime environment are largely

beyond the scope of this research. A simple library mechanism has been implemented in

*" the prototype system. and library and runtime support are discussed in terms of

.1

language design and implementation decision.

A Unified Approach to the Construction of Correct Concurrent

Programs - Thierry Paradan

Although a great deal of attention has been devoted to the problem of concurrent

program verification, a unified framework for constructing shared memory and

distributed programs and faciliting their verification has remained largely unexplored.

The purpose of this thesis is to explore an approach to this unification.

To achieve this goal, a simple programming language (called deb) based on a

construct related to Dijkstra's "do..od" is proposed. One of the fundamental features of

deb is the absence of a classical synehronizatiun primitive. Instead, to ensure

harmonious cooperation among concurrent processes, the concept of owel -formedness is

introduced. What characterizes a weoll-formed concurrent program is its semantic

equivalence to a sequential nondeterministic program. To verify that a program is well-

formed. a sound proof system is supplied in the form of a set of conditions that
a-

guarantee well-formedness. The main advantage of this set o rules is a greater clarity in
",

the conceptual understanding of the problems arising from the interaction of concurrent

agents.

Since a well-formed program is semantically equivalent to sequential

nondeterministic one. verfication methods defined for sequential programs can readily be

applied. Further, it is argued that the design of deb structures can serve as a basis for

the definition of a large set of powerful proof rules. The expected consequence is a

significant decrease, both in length and difficulty, of program vertificaiton in this

language.

In addition to accomplishing its primary objective, deb has the following desirable

10

feat ures.

1. While it is tailored for use in distributed programming. deb allows the use of
shared data and does not contain any specific message passing primitive.
Messages are defined through a special type of shared data object called a

swil .h. Programs written in deb can thus be viewed and used as ordinary
(shared memory) parallel programs.

2. In addition, the concept of well-formedness facilities the implementation of
sequential nondeterministism by making it easier and more efficient than in
the genera) case.

Programming in Pictures - Georg Raeder

Programming in conventional programming languages is awkward because the

resulting programs are quite far from how we like to think about them, both

conceptionally and representationally. By representing programs as semantically

suggestive graphical images we can shorten the gap between mind and medium and

thereby make programming more pleasant, efficient. and less error-prone. A rich

graphical interface can also aid naive programmers by making abstract concepts

concrete.

In this thesis we examine the use of pictures in programming. We point out the

salient characteristics of pictures vs. text. In particular, the concreteness, random access

nature, high transfer rate, namelessness, multi-dimensionality, and possibilities for

animation render pictures well qualified for representing programs. We discuss in more

detail the best form of a pictorial program display, and arrive at a solution based on

data structures as the primary displayed aspect. We also assign other program aspects,

like control and hierarchy. to picture dimensions, obtainbing a unified view that allows

the representation of programs as a single object instead of a series of different views.

We develop techniques for reading and writing programs through sequebces of pointing

actions animated opn top of the data structure display, mimicking the way people

~~~4'4
U- ' - , - : ' -, - -', -:." '" " ' . . . -. -.., ."- .-..° . i'-.".



11

informally explain programs through bandwaving on data structure illustrations.

We describe a concrete implementation of our ideas about programming in

pictures. The system is based on a functional programming model. It allows the

creation of functions where the data types or input and output objects are illustrated by

the user. The user inputs pictures related to the application domain and inserts them in

an algorithm framework supplied by the system. We show how our style of

programming leads us to a version of programming by example.

Finally, we examine what audience would benefit the most from a pictorial

programming system, and what kind of applications these people would be interested in.

We define the term "casusal programming" as the creation of small programs by naive

or casual users, and identify this as a useful application area of programming in pictures.

.-




